But there are also active researchers doing real research. Physics postdocs aren’t just sitting around in a circle making up stories about what the universe is like.
i ask out of layman curiosity
That said: I'll submit the first detection of gravitational waves as two black holes merged together in 2020 as meeting the bar of "notable breakthrough in the last decade".
2015. (Your point is otherwise taken).
https://en.wikipedia.org/wiki/First_observation_of_gravitati...
Personally I think the ER=EPR conjecture and the complexity/action duality hypothesis are incredibly interesting. Technically ER=EPR was formulated in 2000s (maybe 90s?) and CA-duality is approaching if not just past 10 years old, but the thing about asking for breakthroughs is that they take a while to percolate. Ex Hawking radiation wasn't formulated until, like, 50-70 years after the "basis" (schwarzshild, Schrodinger) was formed.
There's also been a ton of productive research integrsting computer science and physics lately ( on hn last week: https://arxiv.org/abs/2403.16850 and 2022 novel prize; https://www.scientificamerican.com/article/the-universe-is-n...)
Also JWST just keeps on giving, and gravitational waves were only confirmed in 2017. If you extend a bit further higgs was in the 2010s
So, in summary, in the late 10 years - we've shown a break in our intuition of physics (nonloca-realness, that 2022 paper) - proposed some novel yet elegant theories (CA-duality, and I'd hope you'd begrudge me er=EPR) - confirmed some insane provings to the underlying reality (gravitational waves)
If those aren't noteworthy, I'd ask what you consider noteworthy any why you consider it noteworthy
There have been almost no truly significant, novel predictions that have a hope in hell of panning out in like, 40 years or more. The only mildly interesting, novel idea in physics has been quantum computing, and even that was first published in 1980.
> So, in summary, in the late 10 years - we've shown a break in our intuition of physics (nonloca-realness, that 2022 paper)
This paper showed no such thing, it has the same superdeterminism loophole as every other paper attempting to refute local realism.
Physics is stuck in a local QM-GR minimum, and some truly novel ideas are needed to kickstart things again. Oppenheim's postquantum gravity is the first truly novel idea I've seen in awhile.
I also agree that JWST is giving us great data, some of which has placed LCDM on the ropes, but astrophysicists are hard at work adding epicycles to keep it alive.
You can't rhetorically gloss over something as important as experimentally validating a 1964 prediction as though it doesn't matter or didn't happen.
If your contention is that a validation of something we already suspected to be true doesn't shatter/shift our paradigm, then how often would you expect that to happen? I would expect it a lot in small ways (so almost every person working in some niche area has probably had some "niche breakthrough" happen in their area that has really changed things) but not a lot in really fundamental overarching ways which for physics I think you could reasonably say has happened about 4 or 5 times in the last 400 years maybe idk: Newton, GR/SR/ quantum mechanics and then whichever ones you want to count out of Maxwell's equations and whatnot.
So to expect something like that every decade is not realistic.
Higgs/Bell/GW were experimental results, I was indeed trying to show that there's a huge lag between prediction and observation.
Imo the paradigm shift that we're slowly undergoing is thinking about physics from a information theoretic perspective instead of a kinematics one. I'd argue that's even more fundamental of a change than Newtonian physics to early GR & QM.
CA-duality is again mathematically interesting, but physically dubious because it's based on anti-de Sitter space, which does not describe our universe.
Information theoretical formulations of QM are mildly interesting, but I don't think they will be revolutionary, and I don't think they are tackling the core problem, which is QM's linearity where we classically observe a non-linear universe.
I suspect "breakthrough" is supposed to mean "huge definitive paradigm shift." We haven't had many of those in all of history, and we certainly haven't had one in the last decade.
Everyone is still very, very confused about quantum fundamentals. Non-local realness is really a Bohmian idea, and that's certainly not new. Universe-as-information is new but there's a huge gap between that and the Standard Model.
And so on. None of these problems are settled in the way that GR and QM settled various issues.
You may say that's too high a bar and things are moving. But there's been more of a history of missteps (string theory, supersymmetry, so far at least) that were sold as potential breakthroughs than genuinely transformative insights.
Maybe a more direct answer to your question would be the discovery of the tetraneutron.
https://en.m.wikipedia.org/wiki/List_of_unsolved_problems_in...
Direct observation of gravitational waves (2015)[2]
exoplanets going from theoretically quite likely to being actually observable things that we find all over the place [3]
...would seem to be examples of very notable results during my lifetime. This is barely scratching the surface and I'm not a physicist but those seem very important to me and likely to stand the test of time and be thought of as important in the future.
Non-breakthroughs:
These guys who are responsible for the goddam blue leds that on every second device these days always keep me from getting a decent dark nights sleep when travelling until I hunt them all down in the hotel room I'm in or whatever and cover them up.[4]
[1] https://www.nobelprize.org/prizes/physics/2013/summary/
[2] https://www.nobelprize.org/prizes/physics/2017/summary/
If it was not possible to simulate, I think we'd be less invested in the math and physics of it.
I was bitten by this last week. I am enrolled in an aops physics course, titled Mechanics. So the last time I took any Mechanics was 40 years ago as a high school student in India. Most of the curriculum then was about stuff banging into each other aka collisions, & asking what happens to the result. Like some golf ball rolls down an inclined plane at some angle theta & hits a identical stationary ball & the objects stick together & we're supposed to compute where they end up. I was curious what American students learn, so I enrolled in this aops course.
Last week's assignment asks me - under which scenario will conservation of momentum make an accurate prediction. The 3 scenarios are - truck collides with car, eagle comes to rest at perch after flying from far away, and two galaxies colliding into each other to form a third megagalaxy.
I naturally picked truck & car - so aops knocks off 2 points for the wrong answer! Apparently if a truck collides with a car there will be so much thermal energy produced by the friction of the road, any prediction you make about the final velocity of the car assuming conservation of momentum will be bogus.
So then I pick eagle coming to rest - aops knocks off 2 more points for the wrong answer! Apparently when eagle comes to land, it will open its giant wings to create air resistance, so momentum won't be conserved.
Ok so that leaves the 2 galaxies. I pick that & get my correct answer, a pathetic score of 3/7. I'm left wondering how do we even know this is correct. Galaxies are too far away to observe. How is one supposed to compute the mass of 2 separate galaxies, & then find their moving velocities accurately, & then find the final velocity of the combined galaxy, & thus confirm momentum was conserved ? Seems very far fetched. I would rather go with the car & truck.